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Abstract. The movement of a two-level atom interacting with an electromagnetic wave and subject to
gravitation is studied using the path-integral formalism. The propagator is first of all written in the
standard form

∫ D(path) exp(i/�)S(path) by replacing the spin by two fermionic oscillators; then it is
determined exactly due to the auxiliary equation which has a cylindric parabolic function as a solution.

1 Introduction

Up to now, a whole class of potentials have been treated
successfully within the path-integral formalism, thanks to
the use of certain transformations [1]. However, it is known
that the most relativistic interactions are those where spin
is taken into account, which is a very useful and very im-
portant notion in physics. In practice, explicit calculations
of propagators for such interactions by the path-integral
formalism are very scarce [2].

For this reason we are devoted to this type of inter-
action; we consider this problem, as treated recently ac-
cording to the usual quantum mechanics [3]. It occurs for
an atom which has two levels and which interacts with a
electromagnetic wave polarized circularly. Its dynamics is
described by the Hamiltonian

H =
p2

2m
− mgr +

1
2
(Ea + Eb) I +

1
2

�ωbaσz

− �Ωba

(
e−i(ωt−kr+φ)σ+ + ei(ωt−kr+φ)σ−

)
, (1)

where the first term represents the kinetic energy, the
second term represents the gravitation energy, the fourth
term represents the interaction energy of the internal mo-
tion (spin) with a two-level atom whose energy levels are
Eb and Ea, ωba = (1/�) (Eb − Ea), and the fifth term is a
scalar electric dipole interaction.

The Pauli matrices are the following:

I =

(
1 0
0 1

)
, σz =

(
1 0
0 −1

)
,

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (2)

As in any experiment which is done in the laboratory,
the influence of the earth’s acceleration in dynamics (the

second term) is taken in account. Thus, by calculating the
probability of a Rabi transition and the transfer from the
population [3], the influence of the gravitation explicitly
was underlined.

In this work we propose to give an alternative solution
to the same problem by the path-integral formalism. For
that we show

(1) that such a problem is reduced to the usual form∫ D(path) exp(i/�)S(path) of Feynman which utilizes
in addition the path grassmanian;

(2) that then the solution requires only the knowledge of
the equation of the movement of the atom, and some
transformations.

2 Path-integral formulation

There are many ways for introducing the spin in the path-
integral formalism [4,5]. The easiest way consists of replac-
ing σ by two fermionic oscillators (u, d) [6]. We have


σz −→ u†u − d†d,
σ+ −→ u†d,
σ− −→ ud†,

(3)

or in condensed notation

σ −→ (u†,d†)σ
(

u

d

)
. (4)

Obviously, the operators u, d anticommute between them-
selves. This fact allows us to write the Hamiltonian in the
following oscillator form:

H =
p2

2m
− mgr +

1
2
(Ea + Eb) I +

1
2

�ωba(u†u − d†d)

−�Ωba

(
e−i(ωt−kr+φ)u†d+ ei(ωt−kr+φ)d†u

)
. (5)
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Now, we move to the path-integral formulation. We des-
ignate by r the real variable describing the atom position,
and by (α, β) the Grassmann variables to describe the
dynamics of the spin. These variables have the following
characteristic features:


u | α, β〉 = α | α, β〉 and〈α, β | u† = 〈α, β | α,
d | α, β〉 = β | α, β〉 and〈α, β | d† = 〈α, β | β,
〈α, β | α′, β′〉 = eαα

′+ββ′
.

(6)

Our purpose is to calculate the matrix element of the
following evolution operator:

U(T ; 0) = TD exp

(
− i

�

∫ T

0
Hdt

)
, (7)

namely

K(f, i;T ) = 〈rf , αf , βf | Û(T ) | ri, αi, βi〉, (8)

where TD is the time ordered Dyson symbol.
Let us subdivide the time interval [0, T ] into N +1 in-

tervals of length ε, using the Trotter formula and inserting
N times the completeness relations in order to eliminate
the operators that appear in the exponential. We get∫

| r〉〈r | d3r = 1, (9)∫
dαdα′dβdβ′e−αα′−ββ′ | α′, β′〉〈α, β |= 1.

It is easy to show that the propagator takes the fol-
lowing discretized form:

K(f, i;T ) = lim
N−→∞

( m

2π�iε

)3N/2
∫ N∏

n=1

d3rn

N+1∏
n=1

× exp
{

i
�

[m
2ε

(∆rn)
2 + εmgrn +

ε

2
(Ea + Eb)

]}

× lim
N−→∞

∫ N∏
n=1

dᾱndαndβ̄ndβne−ᾱnαn−β̄nβn

×
N+1∏
n=1

exp
{[(

1 − iε
ωba
2

)
ᾱαn−1

+
(
1 + iε

ωba
2

)
β̄nβn−1 + iεΩbaei(ωtn−krn−1+φ)β̄nαn−1

+ iεΩbae−i(ωtn−krn+φ)ᾱnβn−1

]}
, (10)

or, in continuous form,

K(f, i;T ) =
∫

D3rDαDαDβ̄Dβ

× exp

{
i
�

∫ T

0
dt

[
m

2
.
r

2 +
i�
2
(α

.
α +β̄

.

β − .
α α−

.

β̄ β)

+ mgr+
1
2
(Ea + Eb) − i�

ωba
2

(αα − β̄β)

+ i�Ωba(ei(ωt−kr+φ)β̄α+ e−i(ωt−kr+φ)αβ)

]}

=
∫

D(path) exp
i
�
S(path). (11)

3 The propagator calculation

In order to remove the terms in exp (±ikr), let us intro-
duce the first following transformation:{

α 	−→ η,

αn = eikrnηn,
and

{
ᾱ 	−→ η,

ᾱn = e−ikrnηn.
(12)

Now the product ᾱnαn−1 gives

ᾱnαn−1 = ηnηn−1e−ik∆rn (13)

= ηnηn−1

(
1 − ik∆rn − 1

2
(k∆rn)

2 + O ((∆r)3
))

,

where ∆rn = rn−rn−1. The other terms of order greater
than 2 and present in the infinitesimal action have been
neglected since they did not contribute to the path inte-
gral. The third term in the development gives

(k∆rn)
2 = k2

x(∆xn)2 + k2
y(∆yn)2 + k2

z(∆zn)2 (14)

+ 2 (kxky∆xn∆yn + kxkz∆xn∆zn + kykz∆yn∆zn) .

All these corrections can be estimated by the following
equations:

〈(∆xn)2〉 = 〈(∆yn)2〉
= 〈(∆zn)2〉

=
√

m

2πiε

∫
d(∆yn)(∆yn)2e(im)/(2ε)(∆yn)2

= i
�ε

m
, (15)

〈∆xn∆yn〉 = 〈∆xn∆zn〉 = 〈∆yn∆zn〉 = 0. (16)

The contribution of these corrections consists of the intro-
duction of an effective potential in the action as follows:

〈
(k∆rn)

2
〉
=

iε�k2

2m
. (17)

Then, taking into account that the Grasmmann variable
verifies η2 = 0, the propagator (10) takes the following
discretized form:

K(f, i;T ) = lim
N−→∞

∫ N∏
n=1

dηndηndβ̄ndβne
−ηnηn−1−β̄nβn

×
N+1∏
n=1

exp

{[(
1 − iε

ωba
2

)
ηnηn−1 +

(
1 + iε

ωba
2

)
β̄nβn−1

− i
εk2

2m
ηnηn−1 + iεΩbaei(ωtn+φ)β̄nηn−1
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+ iεΩbae−i(ωtn+φ)ηnβn−1

]}( m

2π�iε

)3N/2

×
∫ N∏

n=1

d3r

N+1∏
n=1

exp

{
i
�

[
m

2ε

(
∆r − ε

�k

m
ηnηn−1

)2

+ εmgr +
ε

2
(Ea + Eb)

]}
. (18)

It is better to linearize the kinetic energy using the phase
space, and then integrate over r. So

K(f, i;T ) =
∫

D3pe(i/�)pr |T0 (2π�)3 δ
( .
p −mg

)

× exp

{
− i

�

∫ T

0
dt
[

p2

2m
+

pk

m
ηη

]}

× e(i/2�)(Ea+Eb)T
∫

DηDηDβ̄Dβ

× exp

{∫ T

0

[
− 1

2
(η

.
η +β̄

.

β − .
η η−

.

β̄ β)

− i
ωba
2

(ηη − β̄β) (19)

+ iΩba(ei(ωt+φ)β̄η + e−i(ωt+φ)ηβ) − i
�k2

2m
ηη

]}
.

Clearly, the argument of the Dirac function δ
( .
p −mg

)
means that the particle is only subject to the action of
gravitation. The atom momentum is

p = mgt+ p0 where (p0 = constant) . (20)

The contribution of the time-linear function in the
computation of the propagator has the following result:

K(f, i;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0/2m)T+(1/2)gp0T

2+(1/6)mg2T 3)e(i/2�)(Ea+Eb)T

× lim
N−→∞

∫ N∏
n=1

dηndηndβ̄ndβne
−ηnηn−β̄nβn

×
n=N+1∏
n=1

exp

{(
ηn, β̄n

)

 1 − iε

(
ωba

2
+

�k2

2m
+

k

m�
(mgtn + p0)

)
iεΩbae−i(ωtn+φ)

iεΩbaei(ωtn+φ) 1 + i
ωba

2




×
(

ηn−1

βn−1

)}
. (21)

At this level, let us deal with the integration over the
Grassmann variables. We shall remove the terms in
e±i(ωt+ϕ) by introducing the following change:




(η, β) −→ (ψ, φ) ,(
η

β

)
= e−(i/2)(ωt+φ)σz

×e−(i/�)[(�2k2)/(4m)+(k/2m)((1/2)mgt2+p0t)]
(

ψ

φ

)
,

(22)
and

(
η, β̄
) −→ (

ψ̄, φ̄
)
,(

η, β̄
)
= e(i/�)[(�2k2)/(4m)+(k/2m)((1/2)mgt2+p0t)]

×e(i/2)(ωt+φ)σz
(
ψ̄, φ̄
)
,

(23)

So the expression of the propagator (20) becomes

K(f, i;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)T

× lim
N−→∞

∫ n=N∏
n=1

dψ̄ndψndφ̄ndφne−ψ̄nψn−φ̄nφn (24)

×
N+1∏
n=1

exp



(
ψ̄n, φ̄n

)1 − τ
λn
2

τ
√
ν

τ
√
ν 1 + τ

λn
2



(

ψn−1

φn−1

)
 ,

where the new parameter has been introduced


λ = eiπ/4
[
2Ωbay(p0)√

kg
+
√

kgt

]
, ε =

e−iπ/4
√

kg
τ,

ν = i
Ω2
ba

kg
,

y(p0) =
1

2Ωba

[
�k

2m
(2p0 + k) − ∆

]
, ∆ = ω − ωba.

(25)
The next step consists of taking the diagonal form for the
action in order to be able to integrate.

Thus, we set a unit transformation over the Grassmann
variables


(ψ, φ) −→ (γ, δ) ,(
ψ

φ

)
= U(λ)

(
γ

δ

)
=

(
A(λ) −B∗(λ)
B(λ) A∗(λ)

)(
γ

δ

)
,(

ψ̄, φ̄
) −→ (γ̄, δ̄),(

ψ̄, φ̄
)
= U†(λ)(γ̄, δ̄) =

(
A∗(λ) B∗(λ)
−B(λ) A(λ)

)
(γ̄, δ̄),

(26)
with

U(λ)U†(λ) = U†(λ)U(λ) = 1,
detU(λ) = 1,

(27)

and the initial conditions

A(λ0) = 1, B(λ0) = 0 for λ0 = eiπ/4
2Ωbay(p0)√

kg
. (28)
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By means of a simple calculation including the following
development

U(λn−1) = U(λn) − τ
dU
dλ

(λn), (29)

U†(λn)U(λn−1) = I−τU†(λn)
dU
dλ

(λn), (30)

we obtain

K(f, i;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)T lim
N→∞

N∏
n=1

∫
dZ̄ndZne−Z̄nZn

×
N+1∏
n=1

exp
{
Z̄nZn−1 + iτZ̄nQ(n)Zn−1

}
, (31)

where

Q(λn) = iU†(λn)
dU
dλ

(λn)

+ U†(λn)


 i

λn
2

−i
√
ν

−i
√
ν −i

λn
2


U(λn), (32)

and

Zn =

(
γn
δn

)
; Z̄n = (γ̄n, δ̄n). (33)

Now, we determine the unit transformation by fixing the
diagonal form for the action, which leads us to the follow-
ing condition:

Q(λn) = 0. (34)

To be able to integrate, we have to write the grassmannian
part of the expression in an appropriate form. In fact, K
is written again in the following form:

K(f, i;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)T

×
∫

dξ†dξ exp
[−ξ†ξ + V †ξ + ξ†W

]
, (35)

where

V † =
(
0, ..., Z̄N+1

)
, ξ =




Z1
...

ZN


 , W =




Z0
...
0


 .

(36)
Now, we absorb the linear terms in ξ and ξ† thanks to the
shift

ξ → ξ + W , (37)

ξ† → ξ† + V †,

and we integrate over the Grassmann variables.
Our propagator relative to the atom subject to gravity

and interacting with the electromagnetic wave is finally
written as follows:

K(f, i;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)T exp
[
Z̄fZi

]
. (38)

In terms of the old variables it becomes

K(f, i;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)T

× exp

{(
ᾱf , β̄f

)
S(T )

(
αi
βi

)}
, (39)

where

S(T ) = e−(i/�)[(�2k2)/(4m)T+(k/2m)((1/2)mgT 2+p0T)]

×
(
eikrf 0
0 1

)
e−(i/2)(ωT+φ)σz (40)

×
(

A(T ) −B∗(T )
B(T ) A∗(T )

)
e(i/2)φσz

(
e−ikri 0

0 1

)
,

a 2 × 2 matrix.
Let us now turn to the calculation of this propagator,

(37), between the spin states. We just evaluate the matrix
K↑↑(rf , ri;T ) only, and all the other matrices can be de-
duced following the same method. In fact, the propagator
on the spin eigenstates is given by

K↑↑(rf , ri;T ) =
∫

dᾱfdαfdβ̄fdβfdᾱidαidβ̄idβi (41)

× e−ᾱfαf −β̄fβf e−ᾱiαi−β̄iβi〈↑| αf , βf 〉K(f, i, t)〈αi, βi |↑〉.

Thanks to the features [8]

〈↑| αf , βf 〉 = αf , 〈αi, βi |↑〉 = ᾱi, (42)

αf ᾱi = e−ᾱiαf − 1, (43)

(39) takes the following form:

K↑↑(rf , ri;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)T

×
∫

dν†dν
[
exp ν†M

′
ν − exp ν†Mν

]
, (44)
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where the matrices M ′ and M are, respectively,

M =




−1 0 0 0
S11 −1 S11 0
0 0 −1 0

S21 0 S22 −1




and

M ′ =




−1 −1 0 0
S11 −1 S11 0
0 0 −1 0

S21 0 S22 −1


 , (45)

and Snm are the elements of the matrix S(T ) and

ν =




αi
αf
βi
βf


 , ν

†
=
(

αi αf βi βf

)
(46)

are the vectors gathering the old Grassmann variables.
The integration over the Grassmann variables is thus

simple:

K↑↑(rf , ri;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)T [detM ′ − detM ] . (47)

As detM ′ = 1 + S11 and detM = 1, the propagator
following the states of the up–up spin is finally

K↑↑(rf , ri;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)TS11(T ). (48)

Normally, if we repeat the calculations by considering all
the initial and final states of the spin, the propagator will
take the following matrix form:

K(rf , ri;T ) =
∫

d3p0

(2π�)3
e(i/�)(mgt+p0)r|T0

× e−(i/�)((p2
0)/(2m)T+(1/2)gp0T

2+(1/6)mg2T 3)

× e(i/2�)(Ea+Eb)TS(T ). (49)

At this level, we notice that the unit matrix in the matrix
S(T ) is developed as follows:

I = η+η+
+ + η−η+

−, (50)

where

η+ =

(
1
0

)
, η− =

(
0
1

)
(51)

are the proper states of the spin.

By a comparison with the usual spectral decomposi-
tion

K(rf , ri;T ) =
∑
σ=±

∫
d3p0Ψp0,σ(rf , T )Ψ

†
p0,σ

(ri, 0), (52)

the wave functions can be deduced. They become equal to

Ψp0,±(r, T ) =
1

(2π�)3/2 e
(i/�)(mgT+p0)re−(i/�)Eg(T )

×
(
eikr 0
0 1

)
e−(i/2)(ωT+φ)σz

×
(

A(T ) −B∗(T )
B(T ) A∗(T )

)
η±, (53)

where

Eg(T ) =
�

2p2
0

2m
T +

1
2

�

(
p0 +

1
2
k

)
.gT 2 (54)

+
1
6
mg2T 3 + �Ωbay(g0)T +

(
Ea +

1
2

�ω

)
T.

Note that the matrix U (λ) introduced in (30) has been
fixed by the condition (33), so it has to satisfy the follow-
ing auxiliary equation:

i
dU
dλ

(λ) +Q(λ)U(λ) = 0 (55)

i.e. a system of two coupled equations


dA
dλ

+
λ

2
A − i

√
νB = 0,

dB
dλ

− λ

2
B − i

√
νA = 0,

(56)

with

A(λ0) = 1, B(λ0) = 0,

and whose solution determines the elements A and B of
the matrix U (λ).

Let us uncouple this system. Pose

Ã(λ) = −eiπ/4
Ωba√
kg

A (λ) ,

and the preceding system becomes


d2Ã

dλ2 +
(

−ν +
1
2

− λ2

4

)
Ã = 0,

d2B

dλ2 +
(

−ν − 1
2

− λ2

4

)
B = 0,

(57)

where the boundary conditions are now

Ã(λ0) = −eiπ/4
Ωba√
kg

, B(λ0) = 0. (58)



338 M. Aouachria, L. Chetouani: Rabi oscillations in gravitational fields: Exact solution via path integral

This system allows for a solution of parabolic cylinder
function type [7]:




B =
1
c
[Dν(−iλ)D−ν−1(λ0)

−D−ν−1(λ)Dν(−iλ0)] eiπ/4
Ωba√
kg

,

A =
1
c
[Dν(−iλ0)D−ν(λ)

+
Ω2
ba

kg
D−ν−1(λ0)Dν−1(−iλ)

]
,

(59)

with

c = D−ν(λ0)Dν(−iλ0) +
Ω2
ba

kg
Dν−1(−iλ0)D−ν−1(λ0).

(60)
The recurrence relations between the Dν [7] as well as the
boundary conditions are used to determine A and B.

One can see that the result is the same one as that of
the [3]. Indeed the state of the atom in the time T can be
known starting from its state at time t = 0, by using the
fundamental equation which uses the propagator

Ψ(r, T ) =
∫

K(r, r′;T )Ψ(r′, 0)d3r′. (61)

By replacing the expression (47) in (59) and putting

∫
d3r′

(
e−ikr′

0
0 1

)
e(i/2)φσze−ip0r′

Ψ(r′, 0) =

(
a(p0)
b(p0)

)
,

we obtain

Ψ(r, T )

=
1

(2π�)3/2

∫
d3p0e(i/�)(mgT+p0)re−(i/�)Eg(T )

(
eikr 0
0 1

)

× e−(i/2)(ωT+φ)σz

(
A(T ) −B∗(T )
B(T ) A∗(T )

)(
a(p0)
b(p0)

)
, (62)

the same wave function as obtained by solution of the
Schrödinger equation [3].

The same physical features (probabilities of Rabi,
transfer of population,...) can thus be obtained again and

the influence of gravitation can be discussed as has been
done by [3].

4 Conclusion

We have given an exact treatment using the path-integral
formalism to the problem of the two-level atom in inter-
action with an electromagnetic wave and submitted to
gravitation. Thanks to the two fermonic oscillators replac-
ing the spin, the propagator has been written, first in the
conventional form

∫ D(path) exp(i/�)S(path), then deter-
mined with exactitude. Thus the wave function has been
deduced via an auxiliary equation which admits a solu-
tion of a parabolic cylindric type. Our results through the
path-integral approach are in accordance with those in [3]

Finally let us note in the passing that the expressions
(38) and (39) can be compared to

∑
α

exp(iSα) where the

sum relates to all the traditional classical paths α (param-
eterized here by the momentum). This form, remarkable
for this problem, shows that a traditional semi-treatment
can lead to an exact result. The calculation is currently
available. It can be found elsewhere.
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